Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol 2019; 25: 1666–1683. [PMID: 31011253
DOI: 10.3748/wjg.v25.i14.1666
Le Berre C, Sandborn WJ, Aridhi S, Devignes M-D, Fournier L, Smaïl-Tabbone M, Danese S, Peyrin-Biroulet L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 2020; 158: 76-94.e2. [
DOI: 10.1053/j.gastro.2019.08.058
Calderaro J, Seraphin TP, Luedde T, Simon TG. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J Hepatol 2022; 76: 1348–1361. [PMID: 35589255
DOI: 10.1016/j.jhep.2022.01.014
Salehi MA, Harandi H, Mohammadi S, Shahrabi Farahani M, Shojaei S, Saleh RR. Diagnostic Performance of Artificial Intelligence in Detection of Hepatocellular Carcinoma: A Meta-analysis. J Imaging Inform Med 2024; 37: 1297–1311. [PMID: 38438694
DOI: 10.1007/s10278-024-01058-1
Bharti P, Mittal D, Ananthasivan R. Preliminary Study of Chronic Liver Classification on Ultrasound Images Using an Ensemble Model. Ultrason Imaging 2018; 40: 357–379. [
DOI: 10.1177/0161734618787447
Liu X, Song J, Wang S, Zhao J, Chen Y. Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification. Sensors 2017; 17: 149. [
DOI: 10.3390/s17010149
Schmauch B, Herent P, Jehanno P, Dehaene O, Saillard C, Aubé C, Luciani A, Lassau N, Jégou S. Diagnosis of focal liver lesions from ultrasound using deep learning. Diagnostic and Interventional Imaging 2019; 100: 227–233. [
DOI: 10.1016/j.diii.2019.02.009
Yang Q, Wei J, Hao X, Kong D, Yu X, Jiang T, Xi J, Cai W, Luo Y, Jing X, Yang Y, Cheng Z, Wu J, Zhang H, Liao J, Zhou P, Song Y, Zhang Y, Han Z, Cheng W, Tang L, Liu F, Dou J, Zheng R, Yu J, Tian J, Liang P. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study. EBioMedicine 2020; 56: 102777. [
DOI: 10.1016/j.ebiom.2020.102777
Guo L-H, Wang D, Qian Y-Y, Zheng X, Zhao C-K, Li X-L, Bo X-W, Yue W-W, Zhang Q, Shi J, Xu H-X. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. CH 2018; 69: 343–354. [
DOI: 10.3233/CH-170275
Ding W, Meng Y, Ma J, Pang C, Wu J, Tian J, Yu J, Liang P, Wang K. Contrast-enhanced ultrasound-based AI model for multi-classification of focal liver lesions. J Hepatol 2025; : S0168-8278(25)00018–2. [PMID: 39848548
DOI: 10.1016/j.jhep.2025.01.011
Mokrane F-Z, Lu L, Vavasseur A, Otal P, Peron J-M, Luk L, Yang H, Ammari S, Saenger Y, Rousseau H, Zhao B, Schwartz LH, Dercle L. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol 2020; 30: 558–570. [
DOI: 10.1007/s00330-019-06347-w
Yasaka K, Akai H, Abe O, Kiryu S. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study. Radiology 2018; 286: 887–896. [
DOI: 10.1148/radiol.2017170706
Inmutto N, Pojchamarnwiputh S, Na Chiangmai W. Multiphase Computed Tomography Scan Findings for Artificial Intelligence Training in the Differentiation of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Interobserver Agreement of Expert Abdominal Radiologists. Diagnostics (Basel) 2025; 15: 821. [PMID: 40218171
DOI: 10.3390/diagnostics15070821
Hu R, Li H, Horng H, Thomasian NM, Jiao Z, Zhu C, Zou B, Bai HX. Automated machine learning for differentiation of hepatocellular carcinoma from intrahepatic cholangiocarcinoma on multiphasic MRI. Sci Rep 2022; 12: 7924. [PMID: 35562532
DOI: 10.1038/s41598-022-11997-w
Vivanti R, Szeskin A, Lev-Cohain N, Sosna J, Joskowicz L. Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies. Int J CARS 2017; 12: 1945–1957. [
DOI: 10.1007/s11548-017-1660-z
Li W, Jia F, Hu Q. Automatic Segmentation of Liver Tumor in CT Images with Deep Convolutional Neural Networks. JCC 2015; 03: 146–151. [
DOI: 10.4236/jcc.2015.311023
Said D, Carbonell G, Stocker D, Hectors S, Vietti-Violi N, Bane O, Chin X, Schwartz M, Tabrizian P, Lewis S, Greenspan H, Jégou S, Schiratti J-B, Jehanno P, Taouli B. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks. Eur Radiol 2023; 33: 6020–6032. [PMID: 37071167
DOI: 10.1007/s00330-023-09613-0
Xie X-Y, Chen R. Research progress of MRI-based radiomics in hepatocellular carcinoma. Front Oncol 2025; 15: 1420599. [PMID: 39980543
DOI: 10.3389/fonc.2025.1420599
Hamm CA, Wang CJ, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Duncan JS, Weinreb JC, Chapiro J, Letzen B. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol 2019; 29: 3338–3347. [
DOI: 10.1007/s00330-019-06205-9
Jansen MJA, Kuijf HJ, Veldhuis WB, Wessels FJ, Viergever MA, Pluim JPW. Automatic classification of focal liver lesions based on MRI and risk factors. PLoS ONE 2019; 14: e0217053. [PMID: 31095624
DOI: 10.1371/journal.pone.0217053
Deng X, Liao Z. A machine-learning model based on dynamic contrast-enhanced MRI for preoperative differentiation between hepatocellular carcinoma and combined hepatocellular-cholangiocarcinoma. Clin Radiol 2024; 79: e817–e825. [PMID: 38413354
DOI: 10.1016/j.crad.2024.02.001
Preis O, Blake MA, Scott JA. Neural Network Evaluation of PET Scans of the Liver: A Potentially Useful Adjunct in Clinical Interpretation. Radiology 2011; 258: 714–721. [
DOI: 10.1148/radiol.10100547
Kiani A, Uyumazturk B, Rajpurkar P, Wang A, Gao R, Jones E, Yu Y, Langlotz CP, Ball RL, Montine TJ, Martin BA, Berry GJ, Ozawa MG, Hazard FK, Brown RA, Chen SB, Wood M, Allard LS, Ylagan L, Ng AY, Shen J. Impact of a deep learning assistant on the histopathologic classification of liver cancer. npj Digit Med 2020; 3: 23. [
DOI: 10.1038/s41746-020-0232-8
Liao H, Xiong T, Peng J, Xu L, Liao M, Zhang Z, Wu Z, Yuan K, Zeng Y. Classification and Prognosis Prediction from Histopathological Images of Hepatocellular Carcinoma by a Fully Automated Pipeline Based on Machine Learning. Ann Surg Oncol (e-pub ahead of print 8 January 2020;
DOI: 10.1245/s10434-019-08190-1
Singal AG, Llovet JM, Yarchoan M, Mehta N, Heimbach JK, Dawson LA, Jou JH, Kulik LM, Agopian VG, Marrero JA, Mendiratta-Lala M, Brown DB, Rilling WS, Goyal L, Wei AC, Taddei TH. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023; 78: 1922–1965. [PMID: 37199193
DOI: 10.1097/HEP.0000000000000466
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology 2017; 14: 749–762. [
DOI: 10.1038/nrclinonc.2017.141
Erstad DJ, Tanabe KK. Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma. Ann Surg Oncol 2019; 26: 1474–1493. [
DOI: 10.1245/s10434-019-07227-9
Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, Wang S, Zhao X, Tian J. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol 2019; 29: 3595–3605. [
DOI: 10.1007/s00330-018-5985-y
Xu X, Zhang H-L, Liu Q-P, Sun S-W, Zhang J, Zhu F-P, Yang G, Yan X, Zhang Y-D, Liu X-S. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. Journal of Hepatology 2019; 70: 1133–1144. [PMID: 30876945
DOI: 10.1016/j.jhep.2019.02.023
He X, Xu Y, Zhou C, Song R, Liu Y, Zhang H, Wang Y, Fan Q, Wang D, Chen W, Wang J, Guo D. Prediction of microvascular invasion and pathological differentiation of hepatocellular carcinoma based on a deep learning model. Eur J Radiol 2024; 172: 111348. [PMID: 38325190
DOI: 10.1016/j.ejrad.2024.111348
Zhang C, Ma L, Zhang X-L, Lei C, Yuan S-S, Li J-P, Geng Z-J, Li X-M, Quan X-Y, Zheng C, Geng Y-Y, Zhang J, Zheng Q-L, Hou J, Xie S-Y, Lu L-H, Xie C-M. Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence-Free Survival in Hepatocellular Carcinoma. J Magn Reson Imaging 2024; 60: 231–242. [PMID: 37888871
DOI: 10.1002/jmri.29064
Dong Y, Zhou L, Xia W, Zhao X-Y, Zhang Q, Jian J-M, Gao X, Wang W-P. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Initial Application of a Radiomic Algorithm Based on Grayscale Ultrasound Images. Front Oncol 2020; 10: 353. [PMID: 32266138
DOI: 10.3389/fonc.2020.00353
Zhang Y, Wei Q, Huang Y, Yao Z, Yan C, Zou X, Han J, Li Q, Mao R, Liao Y, Cao L, Lin M, Zhou X, Tang X, Hu Y, Li L, Wang Y, Yu J, Zhou J. Deep Learning of Liver Contrast-Enhanced Ultrasound to Predict Microvascular Invasion and Prognosis in Hepatocellular Carcinoma. Front Oncol 2022; 12: 878061. [PMID: 35875110
DOI: 10.3389/fonc.2022.878061
Ji G-W, Zhu F-P, Xu Q, Wang K, Wu M-Y, Tang W-W, Li X-C, Wang X-H. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study. EBioMedicine 2019; 50: 156–165. [
DOI: 10.1016/j.ebiom.2019.10.057
Huang C, Hu P, Tian Y, Wang Y, Gao Y, Qi Q, Zhang Q, Liang T, Li J. Whole-Liver Based Deep Learning for Preoperatively Predicting Overall Survival in Patients with Hepatocellular Carcinoma. Stud Health Technol Inform 2024; 310: 926–930. [PMID: 38269944
DOI: 10.3233/SHTI231100
Chiu H-C, Ho T-W, Lee K-T, Chen H-Y, Ho W-H. Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network. ScientificWorldJournal 2013; 2013: 201976. [PMID: 23737707
DOI: 10.1155/2013/201976
Shi H-Y, Lee K-T, Lee H-H, Ho W-H, Sun D-P, Wang J-J, Chiu C-C. Comparison of Artificial Neural Network and Logistic Regression Models for Predicting In-Hospital Mortality after Primary Liver Cancer Surgery. PLOS ONE 2012; 7: e35781. [
DOI: 10.1371/journal.pone.0035781
Saillard C, Schmauch B, Laifa O, Moarii M, Toldo S, Zaslavskiy M, Pronier E, Laurent A, Amaddeo G, Regnault H, Sommacale D, Ziol M, Pawlotsky J-M, Mulé S, Luciani A, Wainrib G, Clozel T, Courtiol P, Calderaro J. Predicting survival after hepatocellular carcinoma resection using deep-learning on histological slides. Hepatology (e-pub ahead of print 28 February 2020;
DOI: 10.1016/S0168-8278(20)31254-X
Schoenberg MB, Bucher JN, Koch D, Börner N, Hesse S, De Toni EN, Seidensticker M, Angele MK, Klein C, Bazhin AV, Werner J, Guba MO. A novel machine learning algorithm to predict disease free survival after resection of hepatocellular carcinoma. Ann Transl Med 2020; 8. [PMID: 32395478
DOI: 10.21037/atm.2020.04.16
BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. Reig M, Forner A, Rimola J, Ferrer-Fábrega J, Burrel M, García-Criado A Kelle RK, Galle PR, Mazzaferrro V, Salen R, Sangro B, Singal AG, Vogel A, Fuster J, Ayuso C, Bruix J. J Hepatol 2022; 76: [10.1016/j.jhep.2021.11.018.]
DOI: 10.1016/j.jhep.2021.11.018
Morshid A, Elsayes KM, Khalaf AM, Elmohr MM, Yu J, Kaseb AO, Hassan M, Mahvash A, Wang Z, Hazle JD, Fuentes D. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization. Radiol Artif Intell 2019; 1. [PMID: 31858078
DOI: 10.1148/ryai.2019180021
Peng J, Kang S, Ning Z, Deng H, Shen J, Xu Y, Zhang J, Zhao W, Li X, Gong W, Huang J, Liu L. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. Eur Radiol 2020; 30: 413–424. [
DOI: 10.1007/s00330-019-06318-1
Liu D, Liu F, Xie X, Su L, Liu M, Xie X, Kuang M, Huang G, Wang Y, Zhou H, Wang K, Lin M, Tian J. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound. Eur Radiol 2020; 30: 2365–2376. [PMID: 31900703
DOI: 10.1007/s00330-019-06553-6
Abajian A, Murali N, Savic LJ, Laage-Gaupp FM, Nezami N, Duncan JS, Schlachter T, Lin M, Geschwind J-F, Chapiro J. Predicting Treatment Response to Image-Guided Therapies Using Machine Learning: An Example for Trans-Arterial Treatment of Hepatocellular Carcinoma. J Vis Exp (e-pub ahead of print 10 2018;
DOI: 10.3791/58382-v
Mähringer‐Kunz A, Wagner F, Hahn F, Weinmann A, Brodehl S, Schotten S, Hinrichs JB, Düber C, Galle PR, Santos DP dos, Kloeckner R. Predicting survival after transarterial chemoembolization for hepatocellular carcinoma using a neural network: A Pilot Study. Liver International 2020; 40: 694–703. [
DOI: 10.1111/liv.14380
Sieghart W, Hucke F, Pinter M, Graziadei I, Vogel W, Müller C, Heinzl H, Trauner M, Peck-Radosavljevic M. The ART of decision making: retreatment with transarterial chemoembolization in patients with hepatocellular carcinoma. Hepatology 2013; 57: 2261–2273. [PMID: 23316013
DOI: 10.1002/hep.26256
Adhoute X, Penaranda G, Naude S, Raoul JL, Perrier H, Bayle O, Monnet O, Beaurain P, Bazin C, Pol B, Folgoc GL, Castellani P, Bronowicki JP, Bourlière M. Retreatment with TACE: the ABCR SCORE, an aid to the decision-making process. J Hepatol 2015; 62: 855–862. [PMID: 25463541
DOI: 10.1016/j.jhep.2014.11.014
Kim BK, Shim JH, Kim SU, Park JY, Kim DY, Ahn SH, Kim KM, Lim Y-S, Han K-H, Lee HC. Risk prediction for patients with hepatocellular carcinoma undergoing chemoembolization: development of a prediction model. Liver Int 2016; 36: 92–99. [PMID: 25950442
DOI: 10.1111/liv.12865
Ziv E, Yarmohammadi H, Boas FE, Petre EN, Brown KT, Solomon SB, Solit D, Reidy D, Erinjeri JP. Gene Signature Associated with Upregulation of the Wnt/β-Catenin Signaling Pathway Predicts Tumor Response to Transarterial Embolization. Journal of Vascular and Interventional Radiology 2017; 28: 349-355.e1. [PMID: 28126478
DOI: 10.1016/j.jvir.2016.11.004
Liang J-D, Ping X-O, Tseng Y-J, Huang G-T, Lai F, Yang P-M. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods. Computer Methods and Programs in Biomedicine 2014; 117: 425–434. [
DOI: 10.1016/j.cmpb.2014.09.001
Seven İ, Bayram D, Arslan H, Köş FT, Gümüşlü K, Aktürk Esen S, Şahin M, Şendur MAN, Uncu D. Predicting hepatocellular carcinoma survival with artificial intelligence. Sci Rep 2025; 15: 6226. [PMID: 39979406
DOI: 10.1038/s41598-025-90884-6