[1] Siegel RL, Kratzer TB, Giaquinto AN, et al. Cancer statistics, 2025. CA A Cancer J Clinicians 2025;75:10–45. https://doi.org/10.3322/caac.21871.
DOI: 10.3322/caac.21871
[2] André T, Shiu K-K, Kim TW, et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med 2020;383:2207–18. https://doi.org/10.1056/NEJMoa2017699.
DOI: 10.1056/NEJMoa2017699
[3] Andre T, Elez E, Van Cutsem E, et al. Nivolumab plus Ipilimumab in Microsatellite-Instability-High Metastatic Colorectal Cancer. N Engl J Med 2024;391:2014–26. https://doi.org/10.1056/NEJMoa2402141.
DOI: 10.1056/NEJMoa2402141
[4] Saltz LB, Clarke S, Díaz-Rubio E, et al. Bevacizumab in Combination With Oxaliplatin-Based Chemotherapy As First-Line Therapy in Metastatic Colorectal Cancer: A Randomized Phase III Study. JCO 2008;26:2013–9. https://doi.org/10.1200/JCO.2007.14.9930.
DOI: 10.1200/JCO.2007.14.9930
[5] Elez E, Yoshino T, Shen L, et al. Encorafenib, Cetuximab, and mFOLFOX6 in BRAF-Mutated Colorectal Cancer. N Engl J Med 2025. https://doi.org/10.1056/NEJMoa2501912.
DOI: 10.1056/NEJMoa2501912
[6] Watanabe J, Muro K, Shitara K, et al. Panitumumab vs Bevacizumab Added to Standard First-line Chemotherapy and Overall Survival Among Patients With RAS Wild-type, Left-Sided Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA 2023;329:1271–82. https://doi.org/10.1001/jama.2023.4428.
DOI: 10.1001/jama.2023.4428
[7] Awad MM, Liu S, Rybkin II, et al. Acquired Resistance to KRASG12C Inhibition in Cancer. N Engl J Med 2021;384:2382–93. https://doi.org/10.1056/NEJMoa2105281.
DOI: 10.1056/NEJMoa2105281
[8] Kopetz S, Guthrie KA, Morris VK, et al. Randomized Trial of Irinotecan and Cetuximab With or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol 2021;39:285–94. https://doi.org/10.1200/JCO.20.01994.
DOI: 10.1200/JCO.20.01994
[9] Parseghian CM, Sun R, Woods M, et al. Resistance Mechanisms to Anti-Epidermal Growth Factor Receptor Therapy in RAS/RAF Wild-Type Colorectal Cancer Vary by Regimen and Line of Therapy. J Clin Oncol 2023;41:460–71. https://doi.org/10.1200/JCO.22.01423.
DOI: 10.1200/JCO.22.01423
[10] Rojas M, Manzi M, Madurga S, et al. Metabolic plasticity drives specific mechanisms of chemotherapy and targeted therapy resistance in metastatic colorectal cancer. Explor Target Antitumor Ther 2025;6:1002337. https://doi.org/10.37349/etat.2025.1002337.
DOI: 10.37349/etat.2025.1002337
[11] Russo M, Crisafulli G, Sogari A, et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 2019;366:1473–80. https://doi.org/10.1126/science.aav4474.
DOI: 10.1126/science.aav4474
[12] Harrold E, Keane F, Walch H, et al. Molecular and Clinical Determinants of Acquired Resistance and Treatment Duration for Targeted Therapies in Colorectal Cancer. Clin Cancer Res 2024;30:2672–83. https://doi.org/10.1158/1078-0432.CCR-23-4005.
DOI: 10.1158/1078-0432.CCR-23-4005
[13] Deng D, Luo Y, Hong Y, et al. Lactylation: A new direction for tumor-targeted therapy. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2025;1880:189399. https://doi.org/10.1016/j.bbcan.2025.189399.
DOI: 10.1016/j.bbcan.2025.189399
[14] Wang H-L, Chen Y, Wang Y-Q, et al. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat Commun 2022;13:6121. https://doi.org/10.1038/s41467-022-33903-8.
DOI: 10.1038/s41467-022-33903-8
[15] Cherny NI, Oosting SF, Dafni U, et al. ESMO-Magnitude of Clinical Benefit Scale version 2.0 (ESMO-MCBS v2.0). Ann Oncol 2025;36:866–908. https://doi.org/10.1016/j.annonc.2025.04.006.
DOI: 10.1016/j.annonc.2025.04.006
[16] Prasad V, Kim C, Burotto M, et al. The Strength of Association Between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses. JAMA Intern Med 2015;175:1389–98. https://doi.org/10.1001/jamainternmed.2015.2829.
DOI: 10.1001/jamainternmed.2015.2829
[17] Rodriguez A, Esposito F, Oliveres H, et al. Are Quality of Randomized Clinical Trials and ESMO-Magnitude of Clinical Benefit Scale Two Sides of the Same Coin, to Grade Recommendations for Drug Approval? JCM 2021;10:746. https://doi.org/10.3390/jcm10040746.
DOI: 10.3390/jcm10040746
[18] Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013;381:303–12. https://doi.org/10.1016/S0140-6736(12)61900-X.
DOI: 10.1016/S0140-6736(12)61900-X
[19] Li J, Qin S, Xu R, et al. Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2015;16:619–29. https://doi.org/10.1016/S1470-2045(15)70156-7.
DOI: 10.1016/S1470-2045(15)70156-7
[20] Mayer RJ, Van Cutsem E, Falcone A, et al. Randomized Trial of TAS-102 for Refractory Metastatic Colorectal Cancer. N Engl J Med 2015;372:1909–19. https://doi.org/10.1056/NEJMoa1414325.
DOI: 10.1056/NEJMoa1414325
[21] Xu J, Kim TW, Shen L, et al. Results of a Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Trifluridine/Tipiracil (TAS-102) Monotherapy in Asian Patients With Previously Treated Metastatic Colorectal Cancer: The TERRA Study. J Clin Oncol 2018;36:350–8. https://doi.org/10.1200/JCO.2017.74.3245.
DOI: 10.1200/JCO.2017.74.3245
[22] Li J, Qin S, Xu R-H, et al. Effect of Fruquintinib vs Placebo on Overall Survival in Patients With Previously Treated Metastatic Colorectal Cancer: The FRESCO Randomized Clinical Trial. JAMA 2018;319:2486–96. https://doi.org/10.1001/jama.2018.7855.
DOI: 10.1001/jama.2018.7855
[23] Dasari A, Lonardi S, Garcia-Carbonero R, et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): an international, multicentre, randomised, double-blind, phase 3 study. Lancet 2023;402:41–53. https://doi.org/10.1016/S0140-6736(23)00772-9.
DOI: 10.1016/S0140-6736(23)00772-9
[24] Prager GW, Taieb J, Fakih M, et al. Trifluridine-Tipiracil and Bevacizumab in Refractory Metastatic Colorectal Cancer. N Engl J Med 2023;388:1657–67. https://doi.org/10.1056/NEJMoa2214963.
DOI: 10.1056/NEJMoa2214963
[25] Siravegna G, Mussolin B, Buscarino M, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 2015;21:795–801. https://doi.org/10.1038/nm.3870.
DOI: 10.1038/nm.3870
[26] Martinelli E, Martini G, Famiglietti V, et al. Cetuximab Rechallenge Plus Avelumab in Pretreated Patients With RAS Wild-type Metastatic Colorectal Cancer: The Phase 2 Single-Arm Clinical CAVE Trial. JAMA Oncol 2021;7:1529–35. https://doi.org/10.1001/jamaoncol.2021.2915.
DOI: 10.1001/jamaoncol.2021.2915
[27] Sartore-Bianchi A, Pietrantonio F, Lonardi S, et al. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: the phase 2 CHRONOS trial. Nat Med 2022;28:1612–8. https://doi.org/10.1038/s41591-022-01886-0.
DOI: 10.1038/s41591-022-01886-0
[28] Ciracì P, Germani MM, Pietrantonio F, et al. Re-treatment with panitumumab followed by regorafenib versus the reverse sequence in chemorefractory metastatic colorectal cancer patients with RAS and BRAF wild-type circulating tumor DNA: the PARERE study by GONO. Ann Oncol 2025:S0923-7534(25)04934-8. https://doi.org/10.1016/j.annonc.2025.10.002.
DOI: 10.1016/j.annonc.2025.10.002
[29] Corcoran RB, Dias-Santagata D, Bergethon K, et al. BRAF Gene Amplification Can Promote Acquired Resistance to MEK Inhibitors in Cancer Cells Harboring the BRAF V600E Mutation. Sci Signal 2010;3. https://doi.org/10.1126/scisignal.2001148.
DOI: 10.1126/scisignal.2001148
[30] Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E–Mutated Colorectal Cancer. N Engl J Med 2019;381:1632–43. https://doi.org/10.1056/NEJMoa1908075.
DOI: 10.1056/NEJMoa1908075
[31] Kopetz S, Guthrie KA, Morris VK, et al. Randomized Trial of Irinotecan and Cetuximab With or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol 2021;39:285–94. https://doi.org/10.1200/JCO.20.01994.
DOI: 10.1200/JCO.20.01994
[32] Elez E, Yoshino T, Shen L, et al. Encorafenib, Cetuximab, and mFOLFOX6 in BRAF -Mutated Colorectal Cancer. N Engl J Med 2025;392:2425–37. https://doi.org/10.1056/NEJMoa2501912.
DOI: 10.1056/NEJMoa2501912
[33] Amodio V, Yaeger R, Arcella P, et al. EGFR Blockade Reverts Resistance to KRASG12C Inhibition in Colorectal Cancer. Cancer Discovery 2020;10:1129–39. https://doi.org/10.1158/2159-8290.CD-20-0187.
DOI: 10.1158/2159-8290.CD-20-0187
[34] Yaeger R, Uboha NV, Pelster MS, et al. Efficacy and Safety of Adagrasib plus Cetuximab in Patients with KRASG12C-Mutated Metastatic Colorectal Cancer. Cancer Discov 2024;14:982–93. https://doi.org/10.1158/2159-8290.CD-24-0217.
DOI: 10.1158/2159-8290.CD-24-0217
[35] Ruan D-Y, Wu H-X, Xu Y, et al. Garsorasib, a KRAS G12C inhibitor, with or without cetuximab, an EGFR antibody, in colorectal cancer cohorts of a phase II trial in advanced solid tumors with KRAS G12C mutation. Sig Transduct Target Ther 2025;10:189. https://doi.org/10.1038/s41392-025-02274-z.
DOI: 10.1038/s41392-025-02274-z
[36] Desai J, Alonso G, Kim SH, et al. Divarasib plus cetuximab in KRAS G12C-positive colorectal cancer: a phase 1b trial. Nat Med 2024;30:271–8. https://doi.org/10.1038/s41591-023-02696-8.
DOI: 10.1038/s41591-023-02696-8
[37] Fakih MG, Salvatore L, Esaki T, et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. N Engl J Med 2023;389:2125–39. https://doi.org/10.1056/NEJMoa2308795.
DOI: 10.1056/NEJMoa2308795
[38] Yoshino T, Di Bartolomeo M, Raghav K, et al. Final results of DESTINY-CRC01 investigating trastuzumab deruxtecan in patients with HER2-expressing metastatic colorectal cancer. Nat Commun 2023;14:3332. https://doi.org/10.1038/s41467-023-38032-4.
DOI: 10.1038/s41467-023-38032-4
[39] Strickler JH, Cercek A, Siena S, et al. Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): a multicentre, open-label, phase 2 study. Lancet Oncol 2023;24:496–508. https://doi.org/10.1016/S1470-2045(23)00150-X.
DOI: 10.1016/S1470-2045(23)00150-X
[40] Raghav K, Siena S, Takashima A, et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (DESTINY-CRC02): primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol 2024;25:1147–62. https://doi.org/10.1016/S1470-2045(24)00380-2.
DOI: 10.1016/S1470-2045(24)00380-2
[41] Llosa NJ, Cruise M, Tam A, et al. The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints. Cancer Discovery 2015;5:43–51. https://doi.org/10.1158/2159-8290.CD-14-0863.
DOI: 10.1158/2159-8290.CD-14-0863
[42] Madurga S, López-Blanco D, Ríos S, et al. 828P Metabolic singularities between microsatellite unstable (MSI) and stable (MSS) colorectal cancer patients, enhance immune checkpoint inhibitor (ICI) efficacy. Annals of Oncology 2025;36:S560. https://doi.org/10.1016/j.annonc.2025.08.1401.
DOI: 10.1016/j.annonc.2025.08.1401
[43] Gorría T, Sierra-Boada M, Rojas M, et al. Metabolic Singularities in Microsatellite-Stable Colorectal Cancer: Identifying Key Players in Immunosuppression to Improve the Immunotherapy Response. Cancers 2025;17:498. https://doi.org/10.3390/cancers17030498.
DOI: 10.3390/cancers17030498
[44] Zhang J, Lin X-T, Yu H-Q, et al. Elevated FBXL6 expression in hepatocytes activates VRK2-transketolase-ROS-mTOR-mediated immune evasion and liver cancer metastasis in mice. Exp Mol Med 2023;55:2162–76. https://doi.org/10.1038/s12276-023-01060-7.
DOI: 10.1038/s12276-023-01060-7
[45] Renner K, Bruss C, Schnell A, et al. Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy. Cell Reports 2019;29:135-150.e9. https://doi.org/10.1016/j.celrep.2019.08.068.
DOI: 10.1016/j.celrep.2019.08.068
[46] Sun K, Zhang X, Shi J, et al. Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma. Journal of Clinical Investigation 2025;135:e187024. https://doi.org/10.1172/JCI187024.
DOI: 10.1172/JCI187024
[47] Quinn WJ, Jiao J, TeSlaa T, et al. Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Reports 2020;33:108500. https://doi.org/10.1016/j.celrep.2020.108500.
DOI: 10.1016/j.celrep.2020.108500
[48] Wan J, Shi J-H, Shi M, et al. Lactate dehydrogenase B facilitates disulfidptosis and exhaustion of tumour-infiltrating CD8+ T cells. Nat Cell Biol 2025;27:972–82. https://doi.org/10.1038/s41556-025-01673-2.
DOI: 10.1038/s41556-025-01673-2
[49] Watson MJ, Vignali PDA, Mullett SJ, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021;591:645–51. https://doi.org/10.1038/s41586-020-03045-2.
DOI: 10.1038/s41586-020-03045-2
[50] Liu Q, Zhu F, Liu X, et al. Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. Nat Metab 2022;4:559–74. https://doi.org/10.1038/s42255-022-00575-z.
DOI: 10.1038/s42255-022-00575-z
[51] Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 2022;40:201-218.e9. https://doi.org/10.1016/j.ccell.2022.01.001.
DOI: 10.1016/j.ccell.2022.01.001
[52] Geeraerts X, Fernández-Garcia J, Hartmann FJ, et al. Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Reports 2021;37:110171. https://doi.org/10.1016/j.celrep.2021.110171.
DOI: 10.1016/j.celrep.2021.110171
[53] Qian Y, Galan-Cobo A, Guijarro I, et al. MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma. Cancer Cell 2023;41:1363-1380.e7. https://doi.org/10.1016/j.ccell.2023.05.015.
DOI: 10.1016/j.ccell.2023.05.015
[54] Martinez-Ordoñez A, Duran A, Ruiz-Martinez M, et al. Hyaluronan driven by epithelial aPKC deficiency remodels the microenvironment and creates a vulnerability in mesenchymal colorectal cancer. Cancer Cell 2023;41:252-271.e9. https://doi.org/10.1016/j.ccell.2022.11.016.
DOI: 10.1016/j.ccell.2022.11.016
[55] Ma X, Bi E, Lu Y, et al. Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment. Cell Metabolism 2019;30:143-156.e5. https://doi.org/10.1016/j.cmet.2019.04.002.
DOI: 10.1016/j.cmet.2019.04.002
[56] Bell HN, Huber AK, Singhal R, et al. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metabolism 2023;35:134-149.e6. https://doi.org/10.1016/j.cmet.2022.11.013.
DOI: 10.1016/j.cmet.2022.11.013
[57] Segal NH, Passhak M, Köse F, et al. Co-formulated favezelimab plus pembrolizumab versus standard-of-care in previously treated, PD-L1-positive metastatic colorectal cancer: The phase 3, randomized KEYFORM-007 study. JCO 2025;43. https://doi.org/10.1200/JCO.2025.43.4_suppl.LBA248.
DOI: 10.1200/JCO.2025.43.4_suppl.LBA248
[58] Chen EX, Jonker DJ, Loree JM, et al. Effect of Combined Immune Checkpoint Inhibition vs Best Supportive Care Alone in Patients With Advanced Colorectal Cancer: The Canadian Cancer Trials Group CO.26 Study. JAMA Oncol 2020;6:831–8. https://doi.org/10.1001/jamaoncol.2020.0910.
DOI: 10.1001/jamaoncol.2020.0910
[59] Hecht JR, Park YS, Tabernero J, et al. Zanzalintinib plus atezolizumab versus regorafenib in refractory colorectal cancer (STELLAR-303): a randomised, open-label, phase 3 trial. The Lancet 2025;406:2360–70. https://doi.org/10.1016/S0140-6736(25)02025-2.
DOI: 10.1016/S0140-6736(25)02025-2
[60] Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2019;20:849–61. https://doi.org/10.1016/S1470-2045(19)30027-0.
DOI: 10.1016/S1470-2045(19)30027-0
[61] Kawazoe A, Xu R-H, García-Alfonso P, et al. Lenvatinib Plus Pembrolizumab Versus Standard of Care for Previously Treated Metastatic Colorectal Cancer: Final Analysis of the Randomized, Open-Label, Phase III LEAP-017 Study. JCO 2024;42:2918–27. https://doi.org/10.1200/JCO.23.02736.
DOI: 10.1200/JCO.23.02736