Revisiones en Cáncer 00130 / http://dx.doi.org/10.20960/revcancer.00130
Resumen| PDF

Revisión

Tercera línea y sucesivas en mCRC y secuenciación


Mariam Rojas Piedra, Joan Maurel Santasusana

Prepublicado: 2026-02-03

Logo Descargas   Número de descargas: 52      Logo Visitas   Número de visitas: 6      Citas   Citas: 0

Compártelo:


La tercera línea de tratamiento en el cáncer colorrectal metastásico (mCRC) representa un escenario clínico complejo caracterizado por una elevada heterogeneidad biológica y la presencia de múltiples mecanismos de resistencia adquirida. Tras el fracaso de la quimioterapia y de las terapias dirigidas utilizadas en líneas previas, solo una proporción seleccionada de pacientes alcanza esta fase del tratamiento, generalmente aquellos con buen estado funcional y enfermedad menos agresiva. En esta revisión se sintetiza la evidencia disponible de los ensayos aleatorizados que evalúan opciones aprobadas en tercera línea, destaca el beneficio clínico de trifluridina-tipiracilo más bevacizumab como estándar actual. Asimismo, se revisan estrategias emergentes basadas en terapias dirigidas frente a KRAS G12C, BRAF V600E y HER2, junto con el papel limitado de la inmunoterapia en tumores MSS. Finalmente, se propone un algoritmo terapéutico orientado a optimizar la secuenciación de tratamientos y a racionalizar la toma de decisiones en un contexto de beneficio clínico modesto.

Palabras Clave: Tercera línea. Cáncer colorrectal metastásico. Terapias dirigidas.



[1] Siegel RL, Kratzer TB, Giaquinto AN, et al. Cancer statistics, 2025. CA A Cancer J Clinicians 2025;75:10–45. https://doi.org/10.3322/caac.21871.
DOI: 10.3322/caac.21871
[2] André T, Shiu K-K, Kim TW, et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med 2020;383:2207–18. https://doi.org/10.1056/NEJMoa2017699.
DOI: 10.1056/NEJMoa2017699
[3] Andre T, Elez E, Van Cutsem E, et al. Nivolumab plus Ipilimumab in Microsatellite-Instability-High Metastatic Colorectal Cancer. N Engl J Med 2024;391:2014–26. https://doi.org/10.1056/NEJMoa2402141.
DOI: 10.1056/NEJMoa2402141
[4] Saltz LB, Clarke S, Díaz-Rubio E, et al. Bevacizumab in Combination With Oxaliplatin-Based Chemotherapy As First-Line Therapy in Metastatic Colorectal Cancer: A Randomized Phase III Study. JCO 2008;26:2013–9. https://doi.org/10.1200/JCO.2007.14.9930.
DOI: 10.1200/JCO.2007.14.9930
[5] Elez E, Yoshino T, Shen L, et al. Encorafenib, Cetuximab, and mFOLFOX6 in BRAF-Mutated Colorectal Cancer. N Engl J Med 2025. https://doi.org/10.1056/NEJMoa2501912.
DOI: 10.1056/NEJMoa2501912
[6] Watanabe J, Muro K, Shitara K, et al. Panitumumab vs Bevacizumab Added to Standard First-line Chemotherapy and Overall Survival Among Patients With RAS Wild-type, Left-Sided Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA 2023;329:1271–82. https://doi.org/10.1001/jama.2023.4428.
DOI: 10.1001/jama.2023.4428
[7] Awad MM, Liu S, Rybkin II, et al. Acquired Resistance to KRASG12C Inhibition in Cancer. N Engl J Med 2021;384:2382–93. https://doi.org/10.1056/NEJMoa2105281.
DOI: 10.1056/NEJMoa2105281
[8] Kopetz S, Guthrie KA, Morris VK, et al. Randomized Trial of Irinotecan and Cetuximab With or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol 2021;39:285–94. https://doi.org/10.1200/JCO.20.01994.
DOI: 10.1200/JCO.20.01994
[9] Parseghian CM, Sun R, Woods M, et al. Resistance Mechanisms to Anti-Epidermal Growth Factor Receptor Therapy in RAS/RAF Wild-Type Colorectal Cancer Vary by Regimen and Line of Therapy. J Clin Oncol 2023;41:460–71. https://doi.org/10.1200/JCO.22.01423.
DOI: 10.1200/JCO.22.01423
[10] Rojas M, Manzi M, Madurga S, et al. Metabolic plasticity drives specific mechanisms of chemotherapy and targeted therapy resistance in metastatic colorectal cancer. Explor Target Antitumor Ther 2025;6:1002337. https://doi.org/10.37349/etat.2025.1002337.
DOI: 10.37349/etat.2025.1002337
[11] Russo M, Crisafulli G, Sogari A, et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 2019;366:1473–80. https://doi.org/10.1126/science.aav4474.
DOI: 10.1126/science.aav4474
[12] Harrold E, Keane F, Walch H, et al. Molecular and Clinical Determinants of Acquired Resistance and Treatment Duration for Targeted Therapies in Colorectal Cancer. Clin Cancer Res 2024;30:2672–83. https://doi.org/10.1158/1078-0432.CCR-23-4005.
DOI: 10.1158/1078-0432.CCR-23-4005
[13] Deng D, Luo Y, Hong Y, et al. Lactylation: A new direction for tumor-targeted therapy. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2025;1880:189399. https://doi.org/10.1016/j.bbcan.2025.189399.
DOI: 10.1016/j.bbcan.2025.189399
[14] Wang H-L, Chen Y, Wang Y-Q, et al. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat Commun 2022;13:6121. https://doi.org/10.1038/s41467-022-33903-8.
DOI: 10.1038/s41467-022-33903-8
[15] Cherny NI, Oosting SF, Dafni U, et al. ESMO-Magnitude of Clinical Benefit Scale version 2.0 (ESMO-MCBS v2.0). Ann Oncol 2025;36:866–908. https://doi.org/10.1016/j.annonc.2025.04.006.
DOI: 10.1016/j.annonc.2025.04.006
[16] Prasad V, Kim C, Burotto M, et al. The Strength of Association Between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses. JAMA Intern Med 2015;175:1389–98. https://doi.org/10.1001/jamainternmed.2015.2829.
DOI: 10.1001/jamainternmed.2015.2829
[17] Rodriguez A, Esposito F, Oliveres H, et al. Are Quality of Randomized Clinical Trials and ESMO-Magnitude of Clinical Benefit Scale Two Sides of the Same Coin, to Grade Recommendations for Drug Approval? JCM 2021;10:746. https://doi.org/10.3390/jcm10040746.
DOI: 10.3390/jcm10040746
[18] Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013;381:303–12. https://doi.org/10.1016/S0140-6736(12)61900-X.
DOI: 10.1016/S0140-6736(12)61900-X
[19] Li J, Qin S, Xu R, et al. Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2015;16:619–29. https://doi.org/10.1016/S1470-2045(15)70156-7.
DOI: 10.1016/S1470-2045(15)70156-7
[20] Mayer RJ, Van Cutsem E, Falcone A, et al. Randomized Trial of TAS-102 for Refractory Metastatic Colorectal Cancer. N Engl J Med 2015;372:1909–19. https://doi.org/10.1056/NEJMoa1414325.
DOI: 10.1056/NEJMoa1414325
[21] Xu J, Kim TW, Shen L, et al. Results of a Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Trifluridine/Tipiracil (TAS-102) Monotherapy in Asian Patients With Previously Treated Metastatic Colorectal Cancer: The TERRA Study. J Clin Oncol 2018;36:350–8. https://doi.org/10.1200/JCO.2017.74.3245.
DOI: 10.1200/JCO.2017.74.3245
[22] Li J, Qin S, Xu R-H, et al. Effect of Fruquintinib vs Placebo on Overall Survival in Patients With Previously Treated Metastatic Colorectal Cancer: The FRESCO Randomized Clinical Trial. JAMA 2018;319:2486–96. https://doi.org/10.1001/jama.2018.7855.
DOI: 10.1001/jama.2018.7855
[23] Dasari A, Lonardi S, Garcia-Carbonero R, et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): an international, multicentre, randomised, double-blind, phase 3 study. Lancet 2023;402:41–53. https://doi.org/10.1016/S0140-6736(23)00772-9.
DOI: 10.1016/S0140-6736(23)00772-9
[24] Prager GW, Taieb J, Fakih M, et al. Trifluridine-Tipiracil and Bevacizumab in Refractory Metastatic Colorectal Cancer. N Engl J Med 2023;388:1657–67. https://doi.org/10.1056/NEJMoa2214963.
DOI: 10.1056/NEJMoa2214963
[25] Siravegna G, Mussolin B, Buscarino M, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 2015;21:795–801. https://doi.org/10.1038/nm.3870.
DOI: 10.1038/nm.3870
[26] Martinelli E, Martini G, Famiglietti V, et al. Cetuximab Rechallenge Plus Avelumab in Pretreated Patients With RAS Wild-type Metastatic Colorectal Cancer: The Phase 2 Single-Arm Clinical CAVE Trial. JAMA Oncol 2021;7:1529–35. https://doi.org/10.1001/jamaoncol.2021.2915.
DOI: 10.1001/jamaoncol.2021.2915
[27] Sartore-Bianchi A, Pietrantonio F, Lonardi S, et al. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: the phase 2 CHRONOS trial. Nat Med 2022;28:1612–8. https://doi.org/10.1038/s41591-022-01886-0.
DOI: 10.1038/s41591-022-01886-0
[28] Ciracì P, Germani MM, Pietrantonio F, et al. Re-treatment with panitumumab followed by regorafenib versus the reverse sequence in chemorefractory metastatic colorectal cancer patients with RAS and BRAF wild-type circulating tumor DNA: the PARERE study by GONO. Ann Oncol 2025:S0923-7534(25)04934-8. https://doi.org/10.1016/j.annonc.2025.10.002.
DOI: 10.1016/j.annonc.2025.10.002
[29] Corcoran RB, Dias-Santagata D, Bergethon K, et al. BRAF Gene Amplification Can Promote Acquired Resistance to MEK Inhibitors in Cancer Cells Harboring the BRAF V600E Mutation. Sci Signal 2010;3. https://doi.org/10.1126/scisignal.2001148.
DOI: 10.1126/scisignal.2001148
[30] Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E–Mutated Colorectal Cancer. N Engl J Med 2019;381:1632–43. https://doi.org/10.1056/NEJMoa1908075.
DOI: 10.1056/NEJMoa1908075
[31] Kopetz S, Guthrie KA, Morris VK, et al. Randomized Trial of Irinotecan and Cetuximab With or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol 2021;39:285–94. https://doi.org/10.1200/JCO.20.01994.
DOI: 10.1200/JCO.20.01994
[32] Elez E, Yoshino T, Shen L, et al. Encorafenib, Cetuximab, and mFOLFOX6 in BRAF -Mutated Colorectal Cancer. N Engl J Med 2025;392:2425–37. https://doi.org/10.1056/NEJMoa2501912.
DOI: 10.1056/NEJMoa2501912
[33] Amodio V, Yaeger R, Arcella P, et al. EGFR Blockade Reverts Resistance to KRASG12C Inhibition in Colorectal Cancer. Cancer Discovery 2020;10:1129–39. https://doi.org/10.1158/2159-8290.CD-20-0187.
DOI: 10.1158/2159-8290.CD-20-0187
[34] Yaeger R, Uboha NV, Pelster MS, et al. Efficacy and Safety of Adagrasib plus Cetuximab in Patients with KRASG12C-Mutated Metastatic Colorectal Cancer. Cancer Discov 2024;14:982–93. https://doi.org/10.1158/2159-8290.CD-24-0217.
DOI: 10.1158/2159-8290.CD-24-0217
[35] Ruan D-Y, Wu H-X, Xu Y, et al. Garsorasib, a KRAS G12C inhibitor, with or without cetuximab, an EGFR antibody, in colorectal cancer cohorts of a phase II trial in advanced solid tumors with KRAS G12C mutation. Sig Transduct Target Ther 2025;10:189. https://doi.org/10.1038/s41392-025-02274-z.
DOI: 10.1038/s41392-025-02274-z
[36] Desai J, Alonso G, Kim SH, et al. Divarasib plus cetuximab in KRAS G12C-positive colorectal cancer: a phase 1b trial. Nat Med 2024;30:271–8. https://doi.org/10.1038/s41591-023-02696-8.
DOI: 10.1038/s41591-023-02696-8
[37] Fakih MG, Salvatore L, Esaki T, et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. N Engl J Med 2023;389:2125–39. https://doi.org/10.1056/NEJMoa2308795.
DOI: 10.1056/NEJMoa2308795
[38] Yoshino T, Di Bartolomeo M, Raghav K, et al. Final results of DESTINY-CRC01 investigating trastuzumab deruxtecan in patients with HER2-expressing metastatic colorectal cancer. Nat Commun 2023;14:3332. https://doi.org/10.1038/s41467-023-38032-4.
DOI: 10.1038/s41467-023-38032-4
[39] Strickler JH, Cercek A, Siena S, et al. Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): a multicentre, open-label, phase 2 study. Lancet Oncol 2023;24:496–508. https://doi.org/10.1016/S1470-2045(23)00150-X.
DOI: 10.1016/S1470-2045(23)00150-X
[40] Raghav K, Siena S, Takashima A, et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (DESTINY-CRC02): primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol 2024;25:1147–62. https://doi.org/10.1016/S1470-2045(24)00380-2.
DOI: 10.1016/S1470-2045(24)00380-2
[41] Llosa NJ, Cruise M, Tam A, et al. The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints. Cancer Discovery 2015;5:43–51. https://doi.org/10.1158/2159-8290.CD-14-0863.
DOI: 10.1158/2159-8290.CD-14-0863
[42] Madurga S, López-Blanco D, Ríos S, et al. 828P Metabolic singularities between microsatellite unstable (MSI) and stable (MSS) colorectal cancer patients, enhance immune checkpoint inhibitor (ICI) efficacy. Annals of Oncology 2025;36:S560. https://doi.org/10.1016/j.annonc.2025.08.1401.
DOI: 10.1016/j.annonc.2025.08.1401
[43] Gorría T, Sierra-Boada M, Rojas M, et al. Metabolic Singularities in Microsatellite-Stable Colorectal Cancer: Identifying Key Players in Immunosuppression to Improve the Immunotherapy Response. Cancers 2025;17:498. https://doi.org/10.3390/cancers17030498.
DOI: 10.3390/cancers17030498
[44] Zhang J, Lin X-T, Yu H-Q, et al. Elevated FBXL6 expression in hepatocytes activates VRK2-transketolase-ROS-mTOR-mediated immune evasion and liver cancer metastasis in mice. Exp Mol Med 2023;55:2162–76. https://doi.org/10.1038/s12276-023-01060-7.
DOI: 10.1038/s12276-023-01060-7
[45] Renner K, Bruss C, Schnell A, et al. Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy. Cell Reports 2019;29:135-150.e9. https://doi.org/10.1016/j.celrep.2019.08.068.
DOI: 10.1016/j.celrep.2019.08.068
[46] Sun K, Zhang X, Shi J, et al. Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma. Journal of Clinical Investigation 2025;135:e187024. https://doi.org/10.1172/JCI187024.
DOI: 10.1172/JCI187024
[47] Quinn WJ, Jiao J, TeSlaa T, et al. Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Reports 2020;33:108500. https://doi.org/10.1016/j.celrep.2020.108500.
DOI: 10.1016/j.celrep.2020.108500
[48] Wan J, Shi J-H, Shi M, et al. Lactate dehydrogenase B facilitates disulfidptosis and exhaustion of tumour-infiltrating CD8+ T cells. Nat Cell Biol 2025;27:972–82. https://doi.org/10.1038/s41556-025-01673-2.
DOI: 10.1038/s41556-025-01673-2
[49] Watson MJ, Vignali PDA, Mullett SJ, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021;591:645–51. https://doi.org/10.1038/s41586-020-03045-2.
DOI: 10.1038/s41586-020-03045-2
[50] Liu Q, Zhu F, Liu X, et al. Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. Nat Metab 2022;4:559–74. https://doi.org/10.1038/s42255-022-00575-z.
DOI: 10.1038/s42255-022-00575-z
[51] Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 2022;40:201-218.e9. https://doi.org/10.1016/j.ccell.2022.01.001.
DOI: 10.1016/j.ccell.2022.01.001
[52] Geeraerts X, Fernández-Garcia J, Hartmann FJ, et al. Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Reports 2021;37:110171. https://doi.org/10.1016/j.celrep.2021.110171.
DOI: 10.1016/j.celrep.2021.110171
[53] Qian Y, Galan-Cobo A, Guijarro I, et al. MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma. Cancer Cell 2023;41:1363-1380.e7. https://doi.org/10.1016/j.ccell.2023.05.015.
DOI: 10.1016/j.ccell.2023.05.015
[54] Martinez-Ordoñez A, Duran A, Ruiz-Martinez M, et al. Hyaluronan driven by epithelial aPKC deficiency remodels the microenvironment and creates a vulnerability in mesenchymal colorectal cancer. Cancer Cell 2023;41:252-271.e9. https://doi.org/10.1016/j.ccell.2022.11.016.
DOI: 10.1016/j.ccell.2022.11.016
[55] Ma X, Bi E, Lu Y, et al. Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment. Cell Metabolism 2019;30:143-156.e5. https://doi.org/10.1016/j.cmet.2019.04.002.
DOI: 10.1016/j.cmet.2019.04.002
[56] Bell HN, Huber AK, Singhal R, et al. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metabolism 2023;35:134-149.e6. https://doi.org/10.1016/j.cmet.2022.11.013.
DOI: 10.1016/j.cmet.2022.11.013
[57] Segal NH, Passhak M, Köse F, et al. Co-formulated favezelimab plus pembrolizumab versus standard-of-care in previously treated, PD-L1-positive metastatic colorectal cancer: The phase 3, randomized KEYFORM-007 study. JCO 2025;43. https://doi.org/10.1200/JCO.2025.43.4_suppl.LBA248.
DOI: 10.1200/JCO.2025.43.4_suppl.LBA248
[58] Chen EX, Jonker DJ, Loree JM, et al. Effect of Combined Immune Checkpoint Inhibition vs Best Supportive Care Alone in Patients With Advanced Colorectal Cancer: The Canadian Cancer Trials Group CO.26 Study. JAMA Oncol 2020;6:831–8. https://doi.org/10.1001/jamaoncol.2020.0910.
DOI: 10.1001/jamaoncol.2020.0910
[59] Hecht JR, Park YS, Tabernero J, et al. Zanzalintinib plus atezolizumab versus regorafenib in refractory colorectal cancer (STELLAR-303): a randomised, open-label, phase 3 trial. The Lancet 2025;406:2360–70. https://doi.org/10.1016/S0140-6736(25)02025-2.
DOI: 10.1016/S0140-6736(25)02025-2
[60] Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2019;20:849–61. https://doi.org/10.1016/S1470-2045(19)30027-0.
DOI: 10.1016/S1470-2045(19)30027-0
[61] Kawazoe A, Xu R-H, García-Alfonso P, et al. Lenvatinib Plus Pembrolizumab Versus Standard of Care for Previously Treated Metastatic Colorectal Cancer: Final Analysis of the Randomized, Open-Label, Phase III LEAP-017 Study. JCO 2024;42:2918–27. https://doi.org/10.1200/JCO.23.02736.
DOI: 10.1200/JCO.23.02736

Revisión: Quimioterapia en cáncer de esófago

Publicado: 2022-07-26 / http://dx.doi.org/

Revisión: Avances en el tratamiento del cáncer gástrico. Papel de las nuevas terapias dirigidas

Publicado: 2022-07-28 / http://dx.doi.org/

Revisión: Manejo de la toxicidad asociada a terapias dirigidas

Publicado: 2022-07-29 / http://dx.doi.org/

Revisión: Toxicidad genitourinaria de los tratamientos antineoplásicos

Publicado: 2022-07-29 / http://dx.doi.org/

Revisión: Aproximación multidisciplinar e integral del cáncer de vejiga

Publicado: 2022-07-29 / http://dx.doi.org/

Revisión: Tumores del estroma gastrointestinal (GIST). Biología y bases moleculares

Publicado: 2022-07-29 / http://dx.doi.org/

Revisión: Nuevos fármacos más allá de la inmunoterapia en cáncer escamoso de cabeza y cuello

Alberto Jacobo Cunquero Tomás , Alfonso Berrocal Jaime

Revisión: Biomarcadores predictivos en práctica clínica en cáncer colorrectal

Marta Rodríguez Castells , Elena Élez Fernández

Revisión: Toxicidades y soporte en terapias dirigidas e inmunoterapia en cáncer colorrectal

María Nieva Muñoz , David Páez López-Bravo

Revisión: Subgrupos accionables (I): RAS (KRAS G12C) y BRAF V600E

María Tobeña Puyal , Eduardo Polo Marques , Vicente Alonso-Orduña

Revisión: Subgrupos accionables (II): HER2+, NTRK/RET/ALK y MSI-H/TMB alto

Mario Balsa Pena , David Díaz Gimeno , José Carlos Ruffinelli Rodríguez , Cristina Santos Vivas

Revisión: Cáncer colorrectal metastásico de primera línea: elección de biológico por lateralidad/subtipo

Pilar García Alfonso , Aitna Calvo Ferrándiz , Javier Soto Alsar , Laura Ortega Morán , Mónica Benavente de Lucas , Andrés J. Muñoz Martín

Artículos más populares

Revisión: Presente y futuro de la terapia sistémica para las etapas tempranas e intermedias del carcinoma hepatocelular

Los pacientes con carcinoma hepatocelular (CHC) qu...

Publicado: 2025-04-08

Revisión: Tratamiento sistémico del carcinoma hepatocelular

El carcinoma hepatocelular (CHC) es el sexto tumor...

Publicado: 2025-03-26

Revisión: Lenvatinib en el carcinoma hepatocelular avanzado: posicionamiento actual y perspectivas futuras

El panorama del tratamiento del carcinoma hepatoce...

Publicado: 2025-04-10

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.