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Fig. 3. A multitude of targeted therapies are available for squamous cell lung cancers compared with lung adenocarcinoma

ty against the entire ERBB family receptors, showed im-
proved survival over erlotinib in the LUX-Lung 8 study,
which was specific to SQ-NSCLC (15). In post hoc analy-
ses, there were no associations with EGFR protein expres-
sion or copy number. However, the presence of ERBB2
mutations, which were not necessarily located to hotspots,
was associated with improved outcome to afatinib com-
pared with erlotinib (16). Afatinib is currently the only EGFR
TKl approved for EGFR TKls as a single agent.

Rather than classical activating mutations, EGFR gene ampli-
fication and elevated protein expression are more common
in EGFR TKls (2526). Consequently, two EGFR monoclonal
antibodies, cetuxinab and necitumumab, have been investi-
gated for their clinical utility The addition of cetuximab to
chemotherapy was investigated in the phase Ill FLEX study
among SO-NSCLC patients with EGFR  expression and
demonstrated a small benefit in OS compared with chermno-
therapy alone. However, cetuximab had not been adopted
into clinical practice due to toxicity (27). Necitumumab, an-
other EGFR monoclonal antibody, showed a similar modest
improvement in survival, but was better tolerated with no
detriment to quality of life (28). Necitumumab, in combina-
tion with chemotherapy; is one of the few targeted therapies
that is currently approved (by the FDA only) for SQ-NSCLC.

These data found contextualization in the existing efforts
that had been made at characterizing the drugability of
some of these pathways and targets. A synthesis of these
approaches winnowed the list of potential targets to a
handful for initial clinical testing in biomarker-led trials, in-
cluding FGFR1 amplification, discoidin domain receptors
(DDRs), upstream phosphatidylinositol 3-kinase (PI3K) al-
terations, RAS and CDKN2A/RB1 aberrations.

FGFR

Another RTK that is commonly altered in SQ-NSCLC is the
FGFR and its downstream FGF signaling pathway (2930).
Amplifications in FGFR1 are enriched in SO-NSCLC com-
pared with lung adenocarcinoma and are associated with
a worse prognosis (3132). Altered in about 20 % of
SQ-NSCLC, significant efforts have been made to block
FGFR signaling However, nintedanib, an FGFR1 TKI, in
combination with chemotherapy, failed to demonstrate
any benefit over chemotherapy alone in the phase |l
LUME-Lung-T trial (33). This study was again performed in
an unselected patient population. Interestingly, subgroup
analyses showed that clinical benefit, if any, was seen
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seen in SQ-NSCLC allowing for transcription and activation of
oncogenes and contributing to a high mutational burden (49).
On the other hand locus-specific hypermethylation was
found to silence tumor suppressor genes, which was associat-
ed with a high expression of DNA methytransferase 1(DNMT1)
in smokers. In addition to tumorigenesis, epigenetic aberra-
tions contribute to tumor heterogeneity and lineage plasticity.

Epigenetic therapy had disappointing results in solid tu-
mors in the past. First-generation epigenetic drugs typically
inhibit DNMT or histone deacetylase (HDAC) and are trou-
bled by high toxicity and minimal efficacy (50). The DNMT1
inhibitor decitabine failed as monotherapy in clinical trials
of lung cancer. However, next-generation epigenetic thera-
pies are more specific with trials designed for a biomark-
er-selected population. In addition, epigenetic therapies
have synergistic properties with other treatments and po-
tentially restore sensitivity in cases of acquired resistance.
Figure 4 provides a mechanistic overview of the epigenetic
drug targets relevant to SO-NSCLC.

SOX2 and its epigenetic regulators

SOX2 is a lineage-defining transcription factor and one
of the most commonly amplified genes in SO-NSCLC,

reported in up to 60 %-80 % of all tumors (51). Along
the development of the invasive carcinoma sequence,
SOX2 drives squamous differentiation markers. In hu-
man SO-NSCLC, amplification of SOX2 was found to be
an early clonal event, occurring before genome duplica-
tion, which suggested involvement in tumor initiation.
However, SOX2 is not considered a driver oncogene in
the traditional sense since SOX2 alone cannot induce
malignant transformation. The generation of SOQ-NS-
CLC in mouse models required SOX2 overexpression in
combination with PTEN, CKDN2A/2B, or loss of LKB1
Nevertheless, SO-NSCLC cell lines show high depen-
dency on SOX2, and in vitro experiments using RNA in-
terference of SOX2 demonstrated impaired tumor
growth. Although SOX2 is considered undruggable, its
chromatin regulators LSD1 and EZH2 are potential ther-
apeutic opportunities.

LSD1

LSD1 is a histone lysine demethylase (KDM) that fre-
quently participates in  cross-epigenetic regulation.
Overexpression of KDM is associated with cancer prolif-
eration and invasion (52). In human SQ-NSCLC cell
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lines, SOX2 expression was correlated with increased
expression of LSD1 and sensitivity to LSD1 inhibition. A
correlation was not seen between sensitivity to LSD1 in-
hibition and expression of other pluripotent stem cell
proteins. Inhibiting LSD1in SOX2-expressing cells reduc-
es lineage-specific oncogenic potential and promotes
cellular differentiation. LSD1inhibitors, alone or in combi-
nation with other epigenetic madifiers, are currently be-
ing investigated in clinical trials (NCT05268666).

EZH2

Histone lysine methyltransferases (KMTs) are a class of
chromatin regulators with key roles in regulating gene
expression related to DNA replication, DNA damage re-
sponse, and cell cycle progression (52). One of the
most well-studied KMTs is EZH2, an enzymatic compo-
nent of PRC2. Overexpression of EZH2 is common in
human NSCLC and associated with squamous histolo-
gy EZH2 was also observed to be expressed in human
pre-malignant lung lesions with squamous differentia-
tion, with increasing levels from low- to high-grade dys-
plasia, suggesting a role in SO-NSCLC tumorigenesis.
EZH2 dependency was shown in SOX2-amplified
SQO-NSCLC cell lines and was associated with de-
creased transcription of tumor suppressor genes such
as TGFBR2 In mouse models, EZH2 elevation was also
identified as an epigenetic mechanism for squamous
transformation in a KRAS-LKB1 mutant lung tumors in
mouse model In triple-negative breast cancer mouse
models, inhibition of EZH2 reduced the expression of
SOX2. A promising target for SO-NSCLC, EZH2 inhibi-
tors are being actively investigated across solid tumors
(NCT04390737 NCTO4104776, NCTO4407747).

THE FUTURE

Predictive biomarkers

Robust predictive biomarkers are necessary for devel-
oping effective therapies in SO-NSCLC. Heterogeneity
is inherent to SO-NSCLC due to their complex genomic
landscape. Sub-classifications of SQ-NSCLC will im-
prove therapeutic success. At present, next-generation
sequencing (NGS) is recommended for never to light
smokers with SQ-NSCLC. We would, however, advocate
for comprehensive NGS on all patients. While a single
targetable oncogene is unlikely to be identified by NGS,
mutations such in KMT2D, PIK3CA, or NFE2L2 can pro-
vide insight into tumor behavior and response to thera-
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py. and identify potential clinical trials. In the future, the
evaluation of multiple genes that can be combined into
a predictive score will be useful to guide therapy.

Current predictive biomarkers for immunotherapy are
inadequate. PD-L1 expression appeared less predictive
of response in SQ-NSCLC compared with lung adeno-
carcinoma (5354). Tumor mutational burden (TMB) is
only loosely correlated with outcome in SO-NSCLC.
Biomarkers that allow a more comprehensive assess-
ment of the tumor iImmune microenvironment (TIME),
such as gene expression profiling, are necessary. A T
effector gene signature, which encompasses mMRNA ex-
pression of PD-L1 CXCLY, and IFNy, was associated
with improved OS in the IMpower 150 study (55). But
the three-gene T effector signature was not clearly bet-
ter than PD-L1 expression as the biomarker. In contrast,
Wiesweg et al. utilized machine learning to generate a
seven-gene score that could predict response to PD-
(L)1 inhibitors independent of PD-L1 expression (56).
Gene expression profiling on other immune cells, partic-
ularly immunosuppressive populations, in the TIME is
also important. In renal cell carcinomas, a myeloid sig-
nature was uniquely predictive of benefit from the com-
bination treatment with PD-L1 and vascular endothelial
growth factor (VEGF) inhibitors. Furthermore, biomark-
ers evaluating the neoantigen presentation machinery
are necessary as inactivating mutations in HLA have
been reported in SQ-NSCLC.

Subtyping of SO-NSCLC into broad categories is also
helpful Wilkerson et al. identified four major clusters of
SQ-NSCLC using mRNA expression profiling (57). Each
cluster had distinct biological processes: (1) primitive,
enriched for RB1 loss; (2) classical, enriched for SOX1-
TP63 amplification and KEAP1- NFE2L2 alterations; (3)
secretory, with a predominant inflammatory response;
and (4) basaloid, enriched for alterations in cell adhe-
sion. In the past, sub-classification efforts have not been
widely adopted because they do not correlate with
treatment outcomes, which, ironically, are non-selective.
As we develop new therapies targeted at specific path-
ways, efforts in sub-classifying SQ-NSCLC will be im-
mensely helpful in guiding treatment approaches and
clinical trial selection.

The molecular complexity of SQ-NSCLC suggests that
rational combination therapy based on tumor biclogy is
necessary for effective treatment. At present, many clin-
ical trials in SQ-NSCLC explore combinations with cur-
rently available therapies (Table ). Most involve combi-
nations with immune checkpoint inhibitors, which now
form the cornerstone of treatment for SQ-NSCLC. To
capitalize on the initial successes of immunotherapy, a
mechanistic understanding of how the TIME in SQ-NS-
CLC is shaped by its molecular landscape is needed.
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Table I. Current active clinical trials investigating novel combinatory approaches in squamous cell carcinoma of the lung

Target

PARP and PD-1

Drug Phase Study population
Targeting DNA repair and immune checkpoints

Olaparib, pembrolizumab, chemotherapy il Squamous lung cancer

inhibitors (NCT039/6362)
ATR and PD-1 Berzosertib, pembrolizumab, chemotherapy /Il | Squamous lung cancer
inhibitors (NCT04216316) . 5

Targeting signal transduction and immune checkpoints

PIK3CA and PD-1 | Copanlisib, nivolumab
inhibitors (NCTO3735628) /11 NSCLC and advanced solid tumors
SHP2 and PD-1 JAB-3068

I/l NSCLC and advanced solid tumors

DNMT and PD-1

inhibitors (NCTO4721223)
SHP2 CDK4/6 TNO155, partalizumab, ribociclib
and PD-1 inhibitors | (NCTO4000529) | NSCLC and advanced solid tumors

Drugs targetin the epigenome

Tetrahydrouridine-decitabine, nivolumab

inhibitors (NCT02664181) ! NSCLE
Azacytidine, entinostat, nivolumab
DNMT, HDAC, (NCTO1928576) ! NSCLE
and PD-Tinhibitors | Guadecitabine, mocetinostat, pembrolizumab | NSCLC
(NCT03220477)
o HH2853 .
EZH2 inhibitors (NCT04390737) | Advanced solid tumors
EZH2 and PD-1 SHR2554 + SHR1701 | Advanced <olid tumors
inhibitors (NCTO4407741)
LSDTand HDAC JBI-802 .
inhibitor (NCT05268666) | | Advanced solid tumors
BET and HDAC /EN-3694, entinostat | Advanced solid turmors
inhibitors (NCT05053971)
BET and PD-1 ZEN-3694, ipilimumab, nivolumab | Advanced solid tumors
inhibitors (NCT04840589)
Drugs targeting metabolic abnormalities
Glutaminase DRP104 (sirpiglenastat), atezolizumab | NSCLC x
and PD-1inhibitors | (NTCO4471415) with KEAPT NFE2L2 or STK11 mutations
IACS-6274, pembrolizumab .
(NCTO5039801) | NSCLC and advanced solid tumors
IDO and PD-1 10102-10103, pembrolizumab .
inhibitors (NCTO5077709) I NSCLC, HNSCC, urothelial cancers
CONCLUSIONS
SQO-NSCLC share many commonalities with SCCs arising approaches to drug discovery by incorporating epigenetics
from other anatomic sites, and drug discovery in SQ-NS- and exploiting metabolic vulnerabilities are promising In
CLC will have far-reaching implications in managing other addition, the genomic complexity of SQ-NSCLC may be
squamous cancers. Although the search for targeted ther- advantageous for immunotherapies, particularly when
apies in SQ-NSCLC has been disappointing thus far, novel combined with biomarker-directed targeted treatments.
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